
Packet Sniffing and Spoofing Lab

1 Overview
Packet sniffing and spoofing are two important concepts in network security; they are two major threats
in network communication. Being able to understand these two threats is essential for understanding se-
curity measures in networking. There are many packet sniffing and spoofing tools, such as Wireshark,
Tcpdump, Netwox, Scapy, etc. Some of these tools are widely used by security experts, as well as by
attackers. Being able to use these tools is important for students, but what is more important for
students in a network security course is to understand how these tools work, i.e., how packet sniffing
and spoofing are implemented in software.

The objective of this lab is two-fold: learning to use the tools and understanding the technologies under-
lying these tools. For the second object, students will write simple sniffer and spoofing programs, and gain
an in-depth understanding of the technical aspects of these programs. This lab covers the following topics:

• How the sniffing and spoofing work
• Packet sniffing using the pcap library and Scapy
• Packet spoofing using raw socket and Scapy
• Manipulating packets using Scapy

ReadingsandVideos. Detailedcoverageofsniffingandspoofingcanbefoundinthefollowing:

Labenvironment. ThislabhasbeentestedontheSEEDUbuntu20.04VM.Youcandownloadapre-built
image from the SEED website, and run the SEED VM on your own computer. However, most of the SEED
labs can be conducted on the cloud, and you can follow our instruction to create a SEED VM on the cloud.

Note for Instructors. There are two sets of tasks in this lab. The first set focuses on using tools to conduct
packet sniffing and spoofing. It only requires a little bit of Python programming (usually a few lines of
code); students do not need to have a prior Python programming background.

The second set of tasks is designed primarily for Computer Science/Engineering students. Students need
to write their own C programs from the scratch to do sniffing and spoofing. This way, they can gain a deeper
understanding on how sniffing and spoofing tools actually work. Students need to have a solid programming
background for these tasks. The two sets of tasks are independent; instructors can choose to assign one set
or both sets to their students, depending on their students’ programming background.

SEED Labs – Packet Sniffing and Spoofing Lab 2

2 Environment Setup using Container

Figure 1: Lab environment setup

Please download the Labsetup.zip file to your VM from the lab’s website, unzip it, enter the Labsetup folder,
and use the docker-compose.yml file to set up the lab environment. Detailed explanation of the content in
this file and all the involved Dockerfile can be found from the user manual, which is linked to the website of
this lab. If this is the first time you set up a SEED lab environment using containers, it is very important that
you read the user manual.
In the following, we list some of the commonly used commands related to Docker and Compose. Since we
are going to use these commands very frequently, we have created aliases for them in the .bashrc file (in our
provided SEEDUbuntu 20.04 VM).

All the containers will be running in the background. To run commands on a container, we often need to get
a shell on that container. We first need to use the "docker ps" command to find out the ID of the container,
and then use "docker exec" to start a shell on that container. We have created aliases for them in the
.bashrc file.

In this lab, we will use three machines that are connected to the same LAN. We can either use three VMs or
three containers. Figure 1 depicts the lab environment setup using containers. We will do all the attacks on
the attacker container, while using the other containers as the user machines.

10.9.0.1
Host A

10.9.0.5
Host B

10.9.0.6
Attacker

`

Network: 10.9.0.0/24

`

2.1 Container Setup and Commands

$ dockps
$ docksh < id>

$ docker-compose bui ld
$ docker-compose up
$ docker-compose down

// Al iases for the Compose commands above
$dcbui ld
$dcup
$dcdown

#Al iasfor :docker-composebui ld
#Al iasfor :docker-composeup
#Al iasfor :docker-composedown

Bui ld the container image
Start the container
Shut down the container

/ / A l ias for : docker ps - - format " { { . ID} } { { .Names}} "
/ / A l ias for : docker exec - i t < id> /bin/bash

3

$ docksh 96
root@9652715c8e0a: /#

network_mode: host

volumes:
- . /volumes: /volumes

// The fo l lowing example shows how to get a shel l ins ide
hostC $ dockps b1004832e275 0af4ea7a3e2e 9652715c8e0a

hostA-
10 .9 .0 .5
hostB-
10 .9 .0 .6
hostC-
10 .9 .0 .7

/ / Note : I f a docker command requires a container ID, you do not need to
typetheentireIDstr ing.Typingthef i rst fewcharacterswi l l
besuff ic ient ,as longastheyareuniqueamongal l thecontainers .
/ /
/ /

If you encounter problems when setting up the lab environment, please read the “Common Problems”
section of the manual for potential solutions.

• Host mode. In this lab, the attacker needs to be able to sniff packets, but running sniffer programs
inside a container has problems, because a container is effectively attached to a virtual switch, so it
can only see its own traffic, and it is never going to see the packets among other containers. To solve
this problem, we use the host mode for the attacker container. This allows the attacker container to
see all the traffics. The following entry used on the attacker container:

When a container is in the host mode, it sees all the host’s network interfaces, and it even has the
same IP addresses as the host. Basically, it is put in the same network namespace as the host VM.
However, the container is still a separate machine, because its other namespaces are still different
from the host.

Getting the network interface name. When we use the provided Compose file to create containers for
this lab, a new network is created to connect the VM and the containers. The IP prefix for this network is

In this lab, we can either use the VM or the attacker container as the attacker machine. If you look at
the Docker Compose file, you will see that the attacker container is configured differently from the
other containers. Here are the differences:

• Shared folder. When we use the attacker container to launch attacks, we need to put the attacking
code inside the attacker container. Code editing is more convenient inside the VM than in containers,
because we can use our favorite editors. In order for the VM and container to share files, we have
created a shared folder between the VM and the container using the Docker volumes. If you look
at the Docker Compose file, you will find out that we have added the following entry to some of the
containers. It indicates mounting the ./volumes folder on the host machine (i.e., the VM) to the
/volumes folder inside the container. We will write our code in the ./volumes folder (on the
VM), so they can be used inside the containers.

2.2 About the Attacker Container

SEED Labs – Packet Sniffing and Spoofing Lab 4

"docker network"
seed-net :

Another way to get the interface name is to use the
network ID ourselves (the name of the network is
$ docker network ls NETWORKID
a82477ae4e6b e99b370eb525
df62c6635eae
c93733e9f913

command to find out the

We can also get into the interactive mode of Python and then run our program one line at a time at the

10.9.0.0/24, which is specified in the docker-compose.yml file. The IP address assigned to our VM is
10.9.0.1. We need to find the name of the corresponding network interface on our VM, because we need to
use it in our programs. The interface name is the concatenation of br- and the ID of the network created by
Docker. When we use ifconfig to list network interfaces, we will see quite a few. Look for the IP address
10.9.0.1.
$ i fconf ig
br-c93733e9f913

Many tools can be used to do sniffing and spoofing, but most of them only provide fixed functionalities.
Scapy is different: it can be used not only as a tool, but also as a building block to construct other sniffing
and spoofing tools, i.e., we can integrate the Scapy functionalities into our own program. In this set of
tasks, we will use Scapy for each task.
To use Scapy, we can write a Python program, and then execute this program using Python. See the
following example. We should run Python using the root privilege because the privilege is required for
spoofing packets. At the beginning of the program (Line À), we should import all Scapy’s modules.
v iew mycode.py
#! /usr /bin/env python3

a = IP()
a .show(
)

inet
. . .

python3 mycode.py
###[IP]###

vers io
n ih l . . .

= 4
= N o n e

from scapy.a l l import *

NAME
bridge
host
none
seed-
net

DRIV
ER
bridg
e
host
nul l
br idg
e

// Make mycode.py executable (another way to run python programs)
chmod a+x mycode.py
mycode.py

SCO
PE
local
local
local
local

: f lags=4163<UP,BROADCAST,RUNNING,MULTICAST> mtu 1500
netmask 255 .255 .255 .0 broadcast 10 .9 .0 .25510.9.0.1

3 LabTaskSet1:UsingScapytoSniffandSpoofPackets

À

SEED Labs – Packet Sniffing and Spoofing Lab 5

Python prompt. This is more convenient if we need to change our code frequently in an experiment.
python3 >>> f rom scapy.a l l import *
>>> a = IP()
>>> a .show()
###[IP]###

Task 1.1B. Usually, when we sniff packets, we are only interested certain types of packets. We can do that by
setting filters in sniffing. Scapy’s filter use the BPF (Berkeley Packet Filter) syntax; you can find the

Task1.1A. Intheaboveprogram,foreachcapturedpacket,thecallbackfunctionprintpkt()willbe
invoked; this function will print out some of the information about the packet. Run the program with the
root privilege and demonstrate that you can indeed capture packets. After that, run the program again, but
without using the root privilege; describe and explain your observations.
/ / Make the program executable
chmod a+x sni f fer .py

The code above will sniff the packets on the br-c93733e9f913 interface. Please read the instruction
in the lab setup section regarding how to get the interface name. If we want to sniff on multiple interfaces,
we can put all the interfaces in a list, and assign it to iface. See the following example:
i face=[’br-c93733e9f913 ’ , ’enp0s3 ’]

Wireshark is the most popular sniffing tool, and it is easy to use. We will use it throughout the entire lab.
However, it is difficult to use Wireshark as a building block to construct other tools. We will use Scapy for
that purpose. The objective of this task is to learn how to use Scapy to do packet sniffing in Python
programs. A sample code is provided in the following:
#!/usr/bin/env python3 f rom scapy.a l l import *

def pr int_pkt(pkt) :
pkt .show()

vers ion
ih l
. . .

= 4
=None

// Run the program with the root pr iv i lege
sni f fer .py

/ / Switch to the "seed" account , and
// run the program without the root pr iv i lege
su seed
$ sni f fer .py

pkt = sni f f (i face= ’br-c93733e9f913 ’ , f i l ter= ’ icmp’ , prn=pr int_pkt)

3.1 Task 1.1: Sniffing Packets

SEED Labs – Packet Sniffing and Spoofing Lab 6

BPF manual from the Internet. Please set the following filters and demonstrate your sniffer program again
(each filter should be set separately):

• Capture only the ICMP packet

• Capture any TCP packet that comes from a particular IP and with a destination port number 23.

• Capture packets comes from or to go to a particular subnet. You can pick any subnet, such as
128.230.0.0/16; you should not pick the subnet that your VM is attached to.

As a packet spoofing tool, Scapy allows us to set the fields of IP packets to arbitrary values. The objective
of this task is to spoof IP packets with an arbitrary source IP address. We will spoof ICMP echo request
packets, and send them to another VM on the same network. We will use Wireshark to observe whether our
request will be accepted by the receiver. If it is accepted, an echo reply packet will be sent to the spoofed
IP address. The following code shows an example of how to spoof an ICMP packets.
>>> f rom scapy.a l l import *

Line Â creates an ICMP object. The default type is echo request. In Line Ã, we stack a and b together to form
a new object. The / operator is overloaded by the IP class, so it no longer represents division; instead, it
means adding b as the payload field of a and modifying the fields of a accordingly. As a result, we get a new
object that represent an ICMP packet. We can now send out this packet using send() in Line Ä. Please make
any necessary change to the sample code, and then demonstrate that you can spoof an ICMP echo request
packet with an arbitrary source IP address.

In the code above, Line À creates an IP object from the IP class; a class attribute is defined for each IP
header field. We can use ls(a) or ls(IP) to see all the attribute names/values. We can also use a.show()
and IP.show() to do the same. Line Á shows how to set the destination IP address field. If a field is not set,
a default value will be used.
>>> ls (a)
vers ion
ihl
tos
len
id
f lags
frag
tt l
proto
chksum
src
dst
opt ions

3.2 Task 1.2: Spoofing ICMP Packets

>>>a=IP()
>>> a .dst = ’ 10 .0 .2 .3 ’
>>>b=ICMP()
>>>p=a/b
>>>send(p)
.
Sent 1 packets .

À
Á
Â
Ã
Ä

: BitFie ld (4 bits) :
B itF ie ld (4 bits) :
XByteFie ld :
ShortFie ld :
ShortFie ld :
F lagsFie ld (3 bits) :
B itF ie ld (13 bits) :
ByteFie ld :
ByteEnumField :
XShortFie ld :
SourceIPField :
Dest IPFie ld :
PacketListFie ld

= 4 =
N o n e
= 0 =
N o n e
= 1 =
< F l a g
0 () >
= 0 = 6 4
= 0 =
N o n e
=
’ 1 2 7 . 0
. 0 . 1 ’ =
’ 1 2 7 . 0
. 0 . 1 ’ =
[]

(4) (None)
(0) (None)
(1) (<Flag 0
()>) (0) (64)
(0) (None)
(None)
(None) ([])

